

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL

PLANO DE ENSINO

1. IDENTIFICAÇÃO

Curso: Ciència da Computação

Componente curricular: (GEX093) Matemática Discreta

Fase: 3ª fase

Ano/semestre: 2016/2 Número da turma: 14931 Número de créditos: 04

Carga horária – Hora aula: 72h Carga horária – Hora relógio: 60h

Professor: Milton Kist

Atendimento ao Aluno: Dia da Semana: sexta-feira.

Horário: das 15h00 às 18h00.

Sala: 335.

Local: Bloco dos professores.

E-mail para contato: milton.kist@uffs.edu.br.

2. OBJETIVO GERAL DO CURSO

O curso tem por objetivo a formação integral de novos cientistas e profissionais da computação, os quais deverão possuir conhecimentos técnicos e científicos e serem capazes de aplicar estes conhecimentos, de forma inovadora e transformadora, nas diferentes áreas de conhecimento da Computação. Adicionalmente, os egressos do curso deverão ser capazes de adaptar-se às constantes mudanças tecnológicas e sociais, e ter uma formação ao mesmo tempo cidadã, interdisciplinar e profissional.

3. EMENTA

Notação, definições e introdução à lógica matemática e teoria dos conjuntos. Relações, funções, números naturais, conjuntos contáveis e incontáveis, indução matemática, relações de recorrência.

4. OBJETIVOS

4.1 GERAL

Compreender e saber lidar com conceitos matemáticos abstratos fundamentais as disciplinas da computação.

4.2 ESPECÍFICOS

- Desenvolver a capacidade de raciocínio lógico e organizado;
- Estudar conceitos básicos de provas matemáticas e da teoria dos conjuntos para o desenvolvimento da capacidade de raciocínio abstrato, da organização e síntese de ideias.

- Obter uma visão abrangente de conceitos matemáticos que fundamentam a construção de teorias em computação.
- Introduzir a definição de conjuntos, suas propriedades, formas e aplicações em problemas reais e de combinatória.
- Desenvolver no aluno a capacidade da escrita e leitura da matemática formal.
- Integrar a prática dos conhecimentos adquiridos em aplicações na Ciência da Computação.

5. CRONOGRAMA E CONTEÚDOS PROGRAMÁTICOS

ENCONTRO	CONTEÚDO
02/08/2016	Apresentação e comentários sobre o programa da disciplina. Introdução à Matemática Discreta e Lógica Matemática. Lógica de proposições Sentenças, conectivos e operações lógicas. Tabelas-verdade.
09/08/2016	Tabelas-verdade. Proposições condicionais. Operções Bit. Tautologias e Contradições. Proposições logicamente equivalentes. Leis de Morgan.
16/08/2016	Predicados e quantificadores: lógica de predicados; quantificadores universal e existencial.
23/08/2016	Quantificadores agrupados. Exemplos e exercícios.
30/08/2016	Teoria dos conjuntos. Subconjuntos. Conjuntos finitos. Exemplos. Álgebra de conjuntos: operações com conjuntos.
06/09/2016	Álgebra de conjuntos: operações entre conjuntos. Relação entre as operações com conjuntos e as operações lógicas. Exemplos e exercícios.
13/09/2016	Realização da Prova 1.
20/09/2016	Regras de inferência. Demonstrações (provas). Técnicas de demonstrações: demonstrações diretas; demonstrações por contraposição; demonstrações por contradição (absurdo). Exemplos e exercícios.
27/09/2016	Demonstrações por exaustão. Funções: domínio, imagem, função injetora, sobre- jetora, bijetora. Composição de funções.
04/10/2016	Função inversa. Gráfico de funções. Conjuntos contáveis e incontáveis (cardinalidade).
11/10/2016	Indução matemática e indução matemática generalizada. Exercícios sobre demonstrações.
18/10/2016	Definições recursisvas. Relações de recorrência lineares homogêneas e heterogêneas de ordem k com coeficientes constantes. Exercícios.
25/10/2016	Realização da Prova 2.
01/11/2016	As bases da contagem. Princípio fundamental da contagem: Regra da Soma, Regra do Produto. Princípio de inclusão e exclusão. Princípio da casa dos pombos.
08/11/2016	Permutações e combinações. Coeficientes binomiais. Teorema binomial. Triângulo de Pascal.
22/11/2016	Permutações e combinações generalizadas. Exercícios.
29/11/2016	Realização da Prova 3.
06/12/2016	Prova de recuperação

6. PROCEDIMENTOS METODOLÓGICOS

A disciplina será conduzida com aulas expositivas/dialogadas discutindo-se os itens de cunho teórico, e trabalhando exemplos e modelos em sala de aula e extraclasse.

Os alunos terão condições de sanar dúvidas relativas ao conteúdo e exercícios na monitoria ou procurando o professor, que disponibilizará um horário de atendimento extraclasse de três horas no período da tarde: sexta-feira, das 15h00 às 18h00.

7. AVALIAÇÃO DO PROCESSO ENSINO-APRENDIZAGEM

A avaliação da aprendizagem do conteúdo do componente curricular será de forma que o estudante demonstre conhecer os conceitos estudados, saiba fazer uso da linguagem matemática e aplicar os princípios teóricos estudados na resolução de exercícios. Desta forma, o componente curricular envolverá as seguinte modalidade de avaliação: aplicação de três provas (P1, P2 e P3), envolvendo conteúdos a serem definidos previamente em aula.

Assim:

Média final = (P1 + P2 + P3) / 3.

Observação: O estudante que perder alguma avaliação deverá dentro de 3 dias úteis justificar a sua ausência, mediante comprovação, junto à Secretaria Acadêmica para posteriormente submeter-se a uma avaliação em novo horário a ser combinado.

7.1 RECUPERAÇÃO: NOVAS OPORTUNIDADES DE APRENDIZAGEM E AVALIAÇÃO

Caso algum estudante obtiver notas nas provas (P1, P2 ou P3) inferiores a 6,0 será oportunizado para ele uma reavaliação (prova de recuperação), de todo conteúdo, para até duas das três provas (P1, P2 e P3). Caso na prova de recuperação o estudante obtenha nota superior às provas anteriores esta poderá substituir as notas de até duas provas anteriores. Esta reavaliação será feita no horário da aula, conforme cronograma, item 5.

8. REFERÊNCIAS

8.1 BÁSICA

GERSTING, Judith L. **Fundamentos Matemáticos para a Ciência da Computação**. 4. ed. Rio de Janeiro: LTC, 2001.

ROSEN, K. H. **Matemática Discreta e suas Aplicações**. Porto Alegre: McGraw-Hill, 2009. LIPSCHUTZ, S. **Teoria e Problemas de Matemática Discreta**. 2. ed. Porto Alegre: Bookman, 2004.

LEWIS, H.; PAPADIMITRIOU, C. Elementos de Teoria da Computação. 2. ed. Porto Alegre: Bookman, 2000.

8.2 COMPLEMENTAR

MENEZES, P. B. **Matemática Discreta para Computação e Informática. Porto Alegre:** Editora Sagra-Luzzatto, 2004. (Serie Livros Didaticos- UFRGS n. 16).

LOVASZ, L.: PELIKAN, J.: VESZTERGOMBI, K. **Matemática Discreta** – Textos Universitarios. Rio de Janeiro: Sociedade Brasileira de Matematica, 2003.

TREMBLAY, J. P.; MANOHAR, R. Discrete Mathematical Structures with Applications to Computer Science. McGraw-Hill Computer Science Series, 1975.

8.3 SUGESTÕES

Sem sugestões

(A)

1744003

MANCO A. SBH ~
Coordenador do curso

MARCO AURÉLIO SPOHN Siape nº.1521671 Coord. do Curso de Clência da Computação Universidade Federal da Fronteira Sul-UFFS Campus Chapecó-SC