LIFES

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL

PLANO DE ENSINO

1. IDENTIFICAÇÃO

Curso: Engenharia Ambiental

Componente curricular: Transferência de Calor e Massa

Fase: 5

Ano/semestre: 2015/01 Número da Turma: 10261 Número de créditos: 4

Carga horária - Hora aula: 72 Carga horária - Hora Relógio: 60

Atendimento ao aluno: Os horários de atendimento serão combinados em sala de aula de acordo com a

disponibilidade dos alunos e professor.

Professor: João Paulo Bender

2. OBJETIVO GERAL DO CURSO

O curso de Engenharia Ambiental tem por objetivo formar profissionais generalistas, humanistas, críticos e reflexivos, que busquem absorver as necessidades da sociedade considerando aspectos políticos, econômicos, sociais, ambientais e culturais. Além dessa visão ampla espera-se desse profissional uma sólida formação no que tange aos conhecimentos científicos específicos necessários para atividades que viabilizam a utilização consciente dos recursos naturais renováveis, bem como sua correta aplicação nos mais variados contextos.

3. EMENTA

Fundamentos de transferência de calor. Formulação integral e diferencial das equações de transporte de calor. Transferência de calor em regime permanente e transiente. Trocadores de calor. Transferência de calor em superfícies estendidas. Fundamentos de transferência de massa. Formulação integral e diferencial das equações de transporte de massa. Cálculo dos coeficientes de transferência de massa. Operações que envolvem transferência de massa. Resistência à Transferência de Massa na fase Líquida e na Fase Gasosa.

4. OBJETIVOS

4.1. GERAL

Capacitar o estudante a entender e resolver problemas envolvendo transferência de calor e massa, com escolha adequada de hipóteses e aplicação de ferramentas correspondentes de solução (analíticas, numéricas e experimentais).

4.2. ESPECÍFICOS

- Estudar a transferência de calor para as diferentes condições do ambiente;
- Conhecer os mecanismos de difusão, convecção e radiação de calor;
- Avaliar a influência do movimento do meio no fenômeno de transporte.
- Compreender a relação causa-efeito da transferência de massa;
- Compreender as resistências associadas à transferência de massa e calor;
- Compreender os mecanismos de transferência de massa;

5. CRONOGRAMA E CONTEÚDOS PROGRAMÁTICOS

ENCONTRO	DATA	CONTEÚDO
Aula 01 (04 créditos) Total Parcial: 04	25/02/2015	Apresentação do plano de ensino aos alunos; Discussão do sistema de avaliação; Introdução à transferência de calor; Definição de calor; Mecanismos de transferência de calor: Condução; Convecção; Radiação; Exercícios aplicados.
Aula 02 (04 créditos) Total Parcial: 08	04/03/2015	Balanço de Energia em uma Superfície; Introdução a Condução de Calor: Propriedades Térmicas da Matéria; Formulação integral e diferencial das equações de transporte de calor: Equação da difusão de calor; Condições iniciais e de contorno. Resolução de exercícios.
Aula 03 (04 créditos) Total Parcial: 12	11/03/2015	Equação da difusão de calor para coordenadas cartesianas, cilíndricas e esféricas. Exercícios.
Aula 04 (04 créditos) Total Parcial: 16	18/03/2015	Condução Unidimensional: Parede plana; Parede Composta; Resistência Térmica.
Aula 05 (04 créditos) Total Parcial: 20	25/03/2015	Primeira Avaliação (A1)
Aula 06 (04 créditos) Total Parcial: 24	01/04/2015	Sistemas Radiais; Transferência de calor em superfícies estendidas (aletas). Exemplos práticos.
Aula 07 (04 créditos) Total Parcial: 28	08/04/2015	Desempenho de aletas; Eficiência de perfis de aletas; Aplicações e exercícios sobre as superfícies estendidas.
Aula 08 (04 créditos) Total Parcial: 32	15/04/2015	Trocadores de Calor; Escoamento interno e externo; Introdução a Convecção: Camada-Limite de Velocidade; Camada-Limite Térmica; Convecção Natural; Correlações empíricas.
Aula 09 (04 créditos) Total Parcial: 36	22/04/2015	Radiação: Conceitos fundamentais; Intensidade de Radiação; Radiação de Corpo negro.
Aula 10 (04 créditos) Total Parcial: 40	29/04/2015	Transferência de massa; Fenomenologia de Transferência de massa: Considerações a respeito do estado da arte; Primeira Lei de Fick. Formulação integral e diferencial das equações de transporte de massa.
Aula 11 (04 créditos) Total Parcial: 44	06/05/2015	Segunda Avaliação (A2)
Aula 12 (04 créditos) Total Parcial: 48	13/05/2015	Resistência à transferência de massa na fase líquida e na fase gasosa; Correlações para o cálculo do coeficiente de difusão para gases, líquidos e sólidos;
Aula 13 (04 créditos)	20/05/2015	Transferência de massa por convecção: Definições de concentrações, velocidades e fluxos.

Total Parcial: 52		
Aula 14 (04 créditos) Total Parcial: 56	27/05/2015	Fluxo em mistura binária.
Aula 15 (04 créditos) Total Parcial: 60	03/06/2015	Coeficiente convectivo de transferência de massa; Correlações para o cálculo do coeficiente convectivo de transferência de massa;
Aula 16 (04 créditos) Total Parcial: 64	10/06/2015	Números adimensionais utilizados para transferência de massa; Correlações para o cálculo do coeficiente convectivo de transferência de massa; Analogias entre quantidade de movimento e transferência de massa;
Aula 17 (04 créditos) Total Parcial: 68	17/06/2015	Terceira Avaliação (A3)
Aula 18 (04 créditos) Total Parcial: 72	24/06/2015	Recuperação

^{*} Cronograma, conteúdos e procedimentos didáticos suscetíveis a alterações.

6. PROCEDIMENTOS METODOLÓGICOS

O procedimento metodológico adotado será através de exposição e discussão dos tópicos da disciplina em sala de aula com a utilização de quadro branco e com apoio de recursos audiovisuais. Esta metodologia também prioriza a construção conjunta de conhecimento, onde o professor e os acadêmicos participam juntos da discussão acerca dos assuntos relacionados à aula. Assim o professor passa a ser mediador de uma discussão que tem por objetivo a apropriação de um conhecimento amplo, claro e objetivo sobre o assunto. A todo o momento será demonstrada a relação dos conteúdos vistos com as demais disciplinas do curso e sua utilização em projetos de pesquisa e no cotidiano das empresas, proporcionando uma relação direta com a prática. O professor conduzirá as aulas com uma introdução ao assunto e, no desenvolvimento dos temas propriamente ditos, serão realizados questionamentos, exemplos e proposição de exercícios aplicados à Engenharia Ambiental, visando motivar o interesse e a atenção dos alunos. O aluno terá à disposição assistência individual do professor para resolver questões e problemas relacionados à disciplina, em horários previamente marcados.

7. AVALIAÇÃO DO PROCESSO ENSINO-APRENDIZAGEM

A avaliação da disciplina será de forma continuada, oportunizando as reflexões e questionamentos durante as aulas. A avaliação, além de proporcionar o acompanhamento do processo de aprendizagem e revalidação dos conhecimentos adquiridos pelos alunos, proporcionará ao docente uma reavaliação do processo de ensino e de aprendizagem utilizado, permitindo possíveis tomadas de decisão no caso de desvios. O processo de avaliação dar-se-á através de três avaliações escritas e um trabalho, sendo de caráter individual e assim representadas:

- (A1) Primeira avaliação escrita:
- (A2) Segunda avaliação escrita;
- (A3) Terceira avaliação escrita;
- (T) Trabalho;

A nota final (NF) do aluno na disciplina será calculada através da seguinte equação:

$$NF = (NP1 + NP2)/2$$

NP1 = (A1 + A2)/2NP2 = (A3 + T)/2

Se $NF \ge 6.0 \rightarrow Aprovado$ Se $NF < 6.0 \rightarrow Reprovado$

onde.

Onde NP1 e NP2 são as notas das avaliações parciais 1 e 2, respectivamente.

O estudante que ficar impedido de realizar uma avaliação no período determinado pelo professor e cujos motivos sejam comprovados e amparados por lei, deverá protocolar junto à Secretaria Acadêmica o pedido para fixação da nova data de realização, em prazo máximo de até três dias úteis, findo o impedimento.

Critérios de Avaliação

- Capacidade de adaptação do conteúdo teórico aos problemas tratados.
- Capacidade de reconhecimento e modelagem dos sistemas tratados.
- Capacidade de reconhecimento e conceitualização das equações tratadas.
- Capacidade de solução analítica e numérica dos problemas propostos.
- Capacidade de aplicação dos conteúdos a novos problemas.

Avaliações Escritas:

- A avaliação será no período de aula.
- Ao menos 2 (dois) alunos devem permanecer até o final da avaliação.
- A avaliação é exclusivamente individual.
- Questões rasuradas, ilegíveis ou incompletas não serão consideradas.

Cabe ressaltar que as avaliações escritas e os critérios de avaliação estão sujeitos a alterações.

7.1 RECUPERAÇÃO: NOVAS OPORTUNIDADES DE APRENDIZAGEM E AVALIAÇÃO

Quando a nota final do acadêmico não atingir a média 6,0 (seis), este terá a possibilidade de realizar uma avaliação de recuperação, a qual abordará uma seleção dos conteúdos vistos ao longo do semestre.

Para recuperar a nota parcial **NP1**, o acadêmico fará uma nova avaliação denominada **ReNP1**. Assim, a nota **NP1**_{final} passa a ser calculada da seguinte forma:

$$NP1_{final} = (NP1 + ReNP1) / 2.$$

Para recuperar a nota parcial **NP2**, o acadêmico fará uma nova avaliação denominada **ReNP2**. Assim, a nota **NP2**_{final} passa a ser calculada da seguinte forma:

$$NP2_{final} = (NP2 + ReNP2) / 2.$$

A nota final (NF) será calculada da seguinte forma:

$$NF = (NP1_{final} + NP2_{final}) / 2$$

Estará aprovado na disciplina o aluno que obtiver nota, com nota final (NF) igual ou superior a 6,0 (seis) e frequência igual ou superior a 75%.

8. REFERÊNCIAS

8.1 BÁSICA

- 1. BEJAN, Adrian. Transferência de Calor. São Paulo: Edgard Blucher Ltda, 1996.
- 2. CREMASCO, M. A. Fundamentos de transferência de massa. Campinas: Unicamp, 1998.
- 3. CUSSLER, E. L. Diffusion Mass Transfer in Fluid System. [S.I.]: Cambridge University Press, 1984.
- 4. INCROPERA, F. P.; DEWITT, D. P. Fundamentos de transferência de calor e de massa [S.I.]: LTC, 1998.
- 5. KERN, Donald Q. Processos de Transmissão de Calor. Rio de Janeiro: Guanabara Dois, 1980. 671 p.
- 6. McCABE, W.; SMITH, J. C.; HARRIOT, P. "Unit Operations of Chemical Engineering". 5. ed. [S.I]: McGraw Hill International Editions, 1993.

8.2 COMPLEMENTAR

- 1. BIRD, R. B.; STEWART, W. E.; LIGTHFOOT, E. N. Transport Phenomena. [S.I.]: Wiley, 1960.
- 2. GEANKOPLIS, C. Transport Phenomena and Unit Operations. [S.I.]: McGraw-Hill, 1993.
- 3. HOLMAN, J. P. Transferência de calor. [S.I.]: McGraw-Hill, 1983.
- 4. TREYBAL, R. Mass Transfer Operations. 3. ed. [S.I.]: McGraw Hill, 1980

Professor	Coordenador do curso
João Paulo Bender	Mauro Leandro Menegotto