UFFS

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL

PLANO DE ENSINO

1. IDENTIFICAÇÃO

Curso: Engenharia Ambiental

Componente Curricular: Qualidade de Água (Turma B)

Fase: 06

Ano/Semestre: 2014/02 Número de Créditos: 03

Carga horária - Hora Aula: 54

Carga horária - Hora Relógio: 45 (CH Teórica: 30; CH Prática: 15)

Professor: Arlindo Cristiano Felippe (arlindocfelippe@uffs.edu.br)

Atendimento ao Aluno: Segunda-Feira, 14h00min, Sala 01-03-12, Bom Pastor.

2. OBJETIVO GERAL DO CURSO

O curso de Engenharia Ambiental tem por objetivo formar profissionais generalistas, humanistas, críticos e reflexivos, que busquem absorver as necessidades da sociedade considerando aspectos políticos, econômicos, sociais, ambientais e culturais. Além dessa visão ampla espera-se desse profissional uma sólida formação no que tange aos conhecimentos científicos específicos necessários para atividades que viabilizam a utilização consciente dos recursos naturais renováveis, bem como sua correta aplicação nos mais variados contextos.

3. EMENTA

Química das Águas. Importância da água na sociedade e na Engenharia Ambiental. Características físico-químicas e bacteriológicas das águas naturais, de abastecimento e residuárias. Legislação. Técnicas de amostragem, coleta e preservação de amostras de águas. Métodos analíticos para caracterização físico-química e biológica das águas naturais, de abastecimento e residuárias. Padrões de qualidade e balneabilidade das águas para diferentes usos. Práticas de laboratório.

4. OBJETIVOS

4.1. GERAL

Fornecer aos estudantes uma visão ampla da importância da água, desde sua natureza química até às características físico-químicas e bacteriológicas que diferenciam sua utilização. Capacitar os estudantes na utilização das técnicas de amostragem, coleta e preservação de amostras. Fornecer aos estudantes o conhecimento sobre as principais técnicas analíticas utilizadas na caracterização das águas naturais, de abastecimento e residuárias. Fornecer o conhecimento necessário para que o estudante possa fazer uma interpretação qualitativa e quantitativa dos parâmetros analisados.

4.2. ESPECÍFICOS

- 1) Orientar o aluno sobre os principais problemas ambientais de poluição e contaminação de águas potáveis.
- 2) Passar conhecimentos de procedimentos de análise de qualidade das águas.
- 3) Estabelecer princípios e mecanismos de controle e de despoluição de águas.
- 4) Capacitar o aluno quanto às técnicas de análise de qualidade ambiental, capacitando-o como integrante de conhecimento para prestação de serviços a comunidade quanto aos riscos de consumo de águas e à segurança de consumo de águas de qualidade baseada em indicadores.

5. CRONOGRAMA E CONTEÚDOS PROGRAMÁTICOS

ENCONTRO	CONTEÚDO
	Apresentação do plano de ensino. Revisão de conceitos químicos aplicados aos estudos de controle da qualidade das águas.
19/08/2014	Técnicas de coleta e amostragem de água. Legislação.
26/08/2014	Características físicas das águas: cor, turbidez, sólidos, temperatura, sabor e odor
02/09/2014	Características químicas das águas: pH, acidez, alcalinidade e dureza
	Aula Prática 1: Determinação da Condutividade, Determinação Potenciométrica do pH, Determinação da Turbidez, Determinação da Cor. Determinação da Alcalinidade, Determinação da Acidez.
16/09/2014	Avaliação AT1
23/09/2014	Ânions de interesse em estudos de controle de qualidade das águas: carbonato, sulfato, sulfeto, cloreto, cianeto. Cátions de interesse em estudos de controle de qualidade das águas: ferro, manganês e metais pesados
30/09/2014	Aula Prática 2: Determinação da Dureza, Determinação de Cloretos.
07/10/2014	Aula Prática 3: Determinação do Ferro Total. Determinação dos Sólidos Totais.
14/10/2014	SEMANA ACADEMICA
21/10/2014	A química do cloro e do flúor nas águas de abastecimento público.
28/10/2014	DIA DO SERVIDOR PÚBLICO
04/11/2014	Oxigênio dissolvido e matéria orgânica em águas
11/11/2014	A química do sulfato de alumínio
18/11/2014	Aula Prática 4: Ensaios de Coagulação e Floculação – Jar-test.
25/11/2014	Avaliação AT2
02/12/2014	RECUPERAÇÃO

6. PROCEDIMENTOS METODOLÓGICOS

A disciplina será ministrada em sala de aula e também em laboratório. Na parte teórica, as aulas serão expositivas com utilização de recursos audiovisuais (projetor e lousa) e questionamentos, discussões, debates, trabalhos individuais e trabalhos em grupo serão realizados. Será buscada uma aprendizagem significativa dos parâmetros físico-químicos envolvidos na qualidade das águas, com a introdução de temas de interesse do cotidiano e da área de engenharia ambiental. O professor conduzirá as aulas iniciando com uma introdução ao tema e um questionamento inicial visando motivar o interesse e a atenção dos alunos para o assunto a ser desenvolvido. A seguir, serão desenvolvidos os temas das aulas propriamente ditos, promovendo a participação efetiva dos alunos. As conclusões das aulas serão feitas com a apresentação de uma síntese do conteúdo, enfatizando-se os pontos mais importantes que foram trabalhados, seguindo-se da indicação da leitura recomendada. Após a apresentação de cada tema, serão propostos problemas para resolução em grupo envolvendo aplicações da teoria estudada e/ou interpretação de dados. Serão utilizadas tecnologias tais como calculadoras científicas, softwares científicos e consulta a base de dados na internet. Na parte experimental, serão realizadas aulas práticas no laboratório para que o estudante tenha contato direto com as análises físico-químicas envolvidas na disciplina.

7. AVALIAÇÃO DO PROCESSO ENSINO-APRENDIZAGEM

A avaliação será contínua, oportunizando-se momentos de reflexão e questionamentos durante as aulas. A avaliação terá o propósito de acompanhar o processo de aprendizagem, servir como uma forma de estudo e revalidação dos conhecimentos adquiridos por parte dos alunos e permitir possíveis tomadas de decisão por parte do docente no sentido de aprimorar o processo de ensino e de aprendizagem. Os instrumentos de avaliação a serem utilizados serão provas escritas e individuais, trabalhos em grupos e testes individuais. Os instrumentos de avaliação serão elaborados de modo a permitir a identificação dos conceitos, habilidades e competências propostas no plano de curso. O sistema de avaliação seguirá as normas estabelecidas no regulamento da graduação da UFFS. Estará aprovado na disciplina, o aluno que obtiver média final igual ou superior a 6,0 (seis) e freqüência igual ou superior a 75 %. A **Média Final** será constituída pela **Média Aritmética** entre as notas parciais **NP1** e **NP2**.

A nota parcial **NP1** será calculada através da seguinte fórmula:

$$NP1 = (AT1x 0.6) + (AR1x 0.3) + (TX1x 0.1)$$
 (Equação 1)

AT1 = Avaliação teórica 1

AR1 = Artigo 1

TX1 = Média dos testes até a data da AT1

A nota parcial **NP2** será calculada através da seguinte fórmula:

$$NP2 = (AT2 \times 0.6) + (AR2 \times 0.3) + (TX2 \times 0.1)$$
 (Equação 2)

AT2 = Avaliação teórica 2

AR2 = Artigo 2

TX2 = Média dos testes realizados entre a data da AT1 e AT2.

7. 1. RECUPERAÇÃO: NOVAS OPORTUNIDADES DE APRENDIZAGEM E AVALIAÇÃO

Caso o discente adquirir nota parcial **NP1** e/ou **NP2** inferior a **6,0**, será aplicada uma nova avaliação visando recuperar estas médias. Estas recuperações acontecerão após aula de revisão onde os discentes poderão levantar as dúvidas referentes ao conteúdo ministrado.

Para recuperação da **NP1**, o aluno fará uma nova avaliação escrita visando recuperar a nota da avaliação **AT1**. Assim, a nota da recuperação substitui a nota **AT1** na Equação 1.

Para recuperação da **NP2**, o aluno fará uma nova avaliação escrita visando recuperar a nota da avaliação **AT2**. Assim, a nota da recuperação substitui a nota **AT2** na Equação 2.

8. REFERÊNCIAS

8.1. BÁSICA

BAIRD, C.; CANN, M. Química Ambiental. 4. ed. Porto Alegre: Bookman, 2011. 844 p.

BRASIL. Agência Nacional da água. **Guia nacional de coleta e preservação de amostras**: água, sedimento, comunidades aquáticas e efluentes líquidos. São Paulo: CETESB, 2011. 325 p.

DI BERNARDO, L.; DANTAS A. D. B. Métodos e técnicas de tratamento de água. 2. ed. São Carlos: Rima, 2005. v. 1-2.

JORDÃO, E. P.; PESSOA, C. A. **Tratamento de esgotos domésticos**. 6. ed. Rio de Janeiro: ABES, 2011.

SALOMÃO, A.S.; OLIVEIRA, R. Manual de análises físico-químicas de águas de abastecimento e residuárias. 1. ed. Rio de Janeiro: ABES, 2001.

8.2. COMPLEMENTAR

ARANA, L. V. **Qualidade da Água em Aquicultura**: princípios e práticas, 3. ed. Florianópolis: Editora da UFSC, 2010. 238 p.

EUGENE, W.R.; *et al.* **Standard methods for the examination of water and wastewater**. 22. [S.l.]: APHA, AWWA, WEF, 2012.

LENZI E.; FAVERO L. O. B.; LUCHESE, E. B. **Introdução à Química da Água** : ciência, vida e sobrevivência. 1. ed. Rio de Janeiro: LTC, 2009. 632 p.

LIBÂNIO, M. **Fundamentos de Qualidade e Tratamento de Água**. 2. ed. Campinas: Átomo, 2010. 444 p.

ROCHA, J. C.; ROSA, A. H.; CARDOSO, A. A. **Introdução a Química Ambiental.** 2. ed. Porto Alegre: Artmed, 2009. 256 p.

8.3. SUGESTÕES

SPERLING, M. V. Introdução à qualidade das águas e ao tratamento de esgotos: Princípios do tratamento biológico de águas residuárias. Belo Horizonte: DESA, 2005. 452 p.

BRASIL, Fundação Nacional de Saúde. **Manual prático de análise de água**. 3 ed. Brasília, DF: Funasa, 2009. 141 p.

BRASIL, Ministério da Saúde. **Portaria nº 2.914, de 12 de dezembro de 2011**. Disponível em: < http://bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html>. Acesso em: 25 set. 2013, 00:08:15.

BRASIL, Ministério do Meio Ambiente, Conselho Nacional do Meio Ambiente (CONAMA). **Resolução nº 357, de 17 de março de 2005**. Disponível em: http://www.mma.gov.br/port/conama/res/res05/res35705.pdf>. Acesso em: 25 set. 2013, 00:04:15.

PIVELI, R. P. **Qualidade das águas e poluição: Aspectos Físico-químicos, 2006**. Disponível em: http://www.leb.esalq.usp.br/disciplinas/Fernando/leb360/Fasciculo%206%20%20Alcalinidade%20e%20Acidez.pdf. Acesso em: 03 fev. 2013, 20:38:00.

Coordenador do curso