UNIVERSIDADE FEDERAL DA FRONTEIRA SUL

PLANO DE ENSINO

1. IDENTIFICAÇÃO

Curso: Ciência da Computação – Noturno Componente curricular: Geometria Analítica

Fase: 1ª

Ano/semestre: 2013/01 Número de créditos: 4

Carga horária – Hora aula: 72 Carga horária – Hora relógio: 60 Professor: Antônio Marcos Correa Neri

Atendimento ao Aluno: Sextas-feiras, das 19:00 às 21:00

2. OBJETIVO GERAL DO CURSO

O curso tem por objetivo a formação integral de novos cientistas e profissionais da computação, os quais deverão possuir conhecimentos técnicos e científicos e serem capazes de aplicar estes conhecimentos, de forma inovadora e transformadora, nas diferentes áreas de conhecimento da Computação. Adicionalmente, os egressos do curso deverão ser capazes de adaptar-se às constantes mudanças tecnológicas e sociais, e ter uma formação ao mesmo tempo cidadã, interdisciplinar e profissional.

3. EMENTA

Matrizes. Determinantes. Sistemas lineares. Vetores. Operações com vetores. Geometria analítica plana: retas e planos; círculos; mudanças de coordenadas. Elementos da Geometria Analítica no espaço: retas e planos; curvas.

4. OBJETIVOS

4.1. GERAL

Propiciar ao aluno condições de identificar e abstrair propriedades fundamentais que envolvem os conceitos de Matrizes, Sistemas Lineares e de vetores e curvas nos Espaços Euclidianos de duas e três dimensões.

4.2. ESPECÍFICOS

Propiciar ao aluno condições de: identificar tipos de matrizes; operar com matrizes; calcular determinantes; construir e resolver sistemas de equações lineares por escalonamento e por inversão de matriz; operar com vetores; reconhecer e calcular produtos escalar, vetorial e misto de vetores, além de interpretá-los geometricamente; usar vetores como um instrumento para resolver problemas envolvendo relações entre pontos, retas e planos; identificar geometricamente equações lineares e quadráticas em até 3 variáveis.

5. CRONOGRAMA E CONTEÚDOS PROGRAMÁTICOS

DATA ENCONTRO	CONTEÚDO
1	Apresentação do professor, da disciplina, da metodologia de avaliação.
2	Matrizes. Definição e primeiras propriedades.
3	Operações com Matrizes. Propriedades.
4	Sistemas Lineares. Classificação com relação ao número de soluções.
5	Sistemas Lineares. Métodos de resolução. Método de Gauss-Jordan.
6	Produto de Matrizes. Propriedades.
7	Matrizes Inversas. Método para encontrar, caso exista.
8	Determinantes. Definição e propriedades.
9	Trabalho 1.
10	Determinantes. Mais propriedades. A regra de Cramer.
11	Mais exercícios sobre os assuntos tratados até o momento. Revisão de conteúdo.
12	Correção da avaliação em sala.
13	Vetores em R2 e em R3. Definições e Operações.
14	Combinação linear, dependência e independência linear.
15	Mais sobre combinações lineares. Produto escalar, produto interno.
16	Norma de vetores, ângulo entre vetores.
17	Projeção Ortogonal.
18	Avaliação 1.
19	Produtos vetorial e misto.
20	Reavaliação.
21	Estudo da Reta e do Plano - Equações da reta e do plano.
22	Equações do Plano. Equações da reta.
23	Ângulos e Distância entre duas retas, entre retas e planos, e entre dois planos.
24	Mais sobre Ângulos e Distâncias.
25	Mais exercícios sobre os assuntos tratados até o momento. Revisão de conteúdo.
26	Posições relativas entre duas retas.
27	Posições relativas entre retas e planos. Posições entre dois planos.
28	Curvas planas. Cônicas. Definições e primeiras propriedades.
29	Equações das Cônicas.
30	Identificação das cônicas.
31	Mais exemplos sobre Cônicas.
32	Coordenadas Polares.
33	Quádricas. Definições e primeiras propriedades.
34	Quádricas. Revisão de Conteúdo. Entrega de Trabalho 2.
35	Avaliação 2.
36	Reavaliação. Apresentação dos resultados finais.

6. PROCEDIMENTOS METODOLÓGICOS

A disciplina será conduzida com aulas expositivas/dialogadas discutindos os itens de cunho teórico, e trabalhando exercícios no quadro. Eventualmente, serão utilizados softwares específicos e em alguns momentos os alunos deverão desenvolver, como forma de avaliação processual, listas de exercícios em sala de aula.

Os alunos terão condições de sanar problemas como dúvidas de exercícios e aulas procurando o professor, que disponibilizará um horário de atendimento definido no item 1 acima.

7. AVALIAÇÃO DO PROCESSO ENSINO-APRENDIZAGEM

Será feito o uso de provas teóricas, avaliação escrita em aula, exercícios extra-classe entre outros.

As notas P1 e P2 correspondem à avaliações feitas em sala de aula com o conteúdo compreendido entre uma avaliação e outra. As notas das avaliações escritas são dadas em porcentagem de acertos do total de questões da avaliação. Aos alunos que não obtiverem nota maior ou igual a 60% em uma das avaliações, o momento de correção servirá para prepará-los para uma reavaliação, que será agendada em momento oportuno. A nota atribuída à P1, por exemplo, será a maior porcentagem de acertos entre a primeira avaliação e a primeira reavaliação. Da mesma forma se compõe P2. Abaixo, T1 e T2 indicam notas de trabalhos desenvolvidos durante o curso.

As notas das avaliações P1, P2, T1 e T2 serão agrupadas em dois momentos: Notas Parciais 1 e 2 (NP1 e NP2, respectivamente).

A NP1 será composta pelas duas notas P1 e T1 a partir do seguinte cálculo:

*NP1=P1*0,08+T1*0,02.*

A NP2 será composta pela nota P3 e por T, considerando o seguinte cálculo:

*NP2=P2*0,08+T2*0,02.*

A média final (MF) será calculada da como abaixo:

MF=(NP1+NP2)/2.

As notas NP1, NP2 e M são dadas numa escala com valores entre 0 e 10, com precisão de décimos. Será considerado aprovado o aluno cuja nota MF for igual ou superior a 6,0 com frequência minima de 75% do total da carga horária da disciplina.

8. REFERÊNCIAS

8.1 BÁSICA

DAVID, C. Geometria analítica. 2. ed. Rio de Janeiro: Livros Técnicos e Científicos, 1977.

STEINBRUCH, A. Matrizes, determinantes e sistemas de equações lineares. São Paulo: Makron Books, 1989.

STEINBRUCH, A.; WINTERLE, P. Geometria analítica. 2. ed. São Paulo: Makron Books, 1987.

8.2 COMPLEMENTAR

LIPSCHULTZ, S. Álgebra linear: teoria e problemas. 3. ed. São Paulo: Makron Books, 1994. (Coleção Schaum).

STEINBRUCH, A.; WINTERLE, P. Álgebra linear. 2. ed. São Paulo: Makron Books, 1987.

BOLDRINI, José Luiz et al. Álgebra linear. 3. ed. São Paulo: Harper How do Brasil, 1980.