

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL

PLANO DE ENSINO

1. IDENTIFICAÇÃO

Curso: Engenharia Ambiental

Componente curricular: Cálculo IV

Fase: 5a.

Ano/semestre: 2015/1 Número da turma: 10255 Número de créditos: 04

Carga horária – Hora aula: 72 h/a Carga horária – Hora relógio: 60 h/a

Professor: PEDRO AUGUSTO PEREIRA BORGES

Atendimento ao Aluno: 3a das 16 as 19h; 5a das 18 as 20h.

2. OBJETIVO GERAL DO CURSO

O curso de Engenharia Ambiental tem por objetivo formar profissionais generalistas, humanistas, críticos e reflexivos, que busquem absorver as necessidades da sociedade considerando aspectos políticos, econômicos, sociais, ambientais e culturais. Além dessa visão ampla espera-se desse profissional uma sólida formação no que tange aos conhecimentos científicos específicos necessários para atividades que viabilizam a utilização consciente dos recursos naturais renováveis, bem como sua correta aplicação nos mais variados contextos.

3. EMENTA

Equações diferenciais ordinárias de primeira ordem. Equações diferenciais lineares de ordem superior. Sistemas lineares de equações diferenciais.

4. OBJETIVOS

4.1. **GERAL**

Compreender e aplicar as técnicas de equações diferenciais ordinárias na resolução analítica de modelos matemáticos sobre objetos da Engenharia.

4.2. ESPECÍFICOS

- **4.2.1.** Expressar variáveis de problemas de engenharia como taxa de variação.
- **4.2.2.** Expressar problemas reais como equações diferenciais.
- 4.2.3. Dominar métodos analíticos de resolução de equações

diferenciais ordinárias.

4.2.4. Aplicar as resoluções de equações diferenciais em problemas de engenharia ambiental.

5. CRONOGRAMA E CONTEÚDOS PROGRAMÁTICOS

No.	ENCONTROS	CONTEÚDO
1	24/02/15	Apresentação do plano de ensino. Definição de equação diferencial e exemplos de aplicações na engenharia. Classificação.
2	03/03/15	Solução Geral de uma Equação Diferencial Ordinária (EDO). Soluções particulares. Problemas de valor inicial (PVI). Família de soluções.
3	10/03/15	Equações com variáveis separáveis. (Distribuição dos seminários)
4	17/03/15	EDO Lineares de 1a ordem homogêneas.
5	24/03/15	EDO Lineares de 1a ordem não homogêneas.
6	31/03/15	Equações exatas
7	07/04/15	Equações de Bernoulli
8	14/04/15	Seminários de EDO
9	28/04/15	1a. Avaliação
10	05/05/15	EDO Lineares de 2a ordem homogêneas com coeficientes constantes. Equação característica. PVI e PVC.
11	12/05/15	EDO Lineares de 2a ordem não homogêneas: Método dos coeficientes a determinar.
12	19/05/15	EDO Lineares de 2a ordem não homogêneas: Método de variação de parâmetros
13	26/05/15	EDOs de ordem superior
14	02/06/15	Sistemas lineares homogêneos com coeficientes constantes:
15	09/06/15	Exercícios e aplicações de EDO na engenharia.
16	16/06/15	EDOs não lineares.
17	23/06/15	2a. Avaliação e entrega dos artigos (Trabalhos de Pesquisa)
18	30/06/15	Recuperação

6. PROCEDIMENTOS METODOLÓGICOS

Aulas expositivas: apresentação da teoria, conceitos, propriedades, exemplos ilustrativos e exercícios.

Seminários de aplicações: identificação e análise de problemas de engenharia expressos com equações diferenciais ordinárias; apresentação dos resultados para a turma, na forma de seminário.

Trabalhos de pesquisa: identificação e análise de problemas de engenharia ambiental expressos com equações diferenciais ordinárias; apresentação dos resultados na forma de pequenos artigos científicos.

Horário de atendimento extra-classe: 3a das 18 as 19h; 6a das 18 as 20h.

7. AVALIAÇÃO DO PROCESSO ENSINO-APRENDIZAGEM

O sistema de avaliação seguirá as normas gerais estabelecidas pela UFFS. Serão realizadas duas avaliações sob a forma de provas escritas (notas P1 e P2) e dois tipos de trabalhos: um sobre os Seminários de aplicações (S) e outro de Trabalhos de Pesquisa (TP).

As notas parciais NP1 e NP2 serão calculadas fazendo a média ponderada entre provas e trabalhos, da seguinte maneira:

P1: nota da primeira avaliação escrita;

P2: nota da segunda avaliação escrita;

S : nota dos seminários de aplicações (apresentação);

TP: nota do Trabalho de Pesquisa (artigos);

LE1: nota das listas de exercícios: bloco 1

LE2: nota das listas de exercícios: bloco 2

NP1 = $0.1 \cdot LE1 + 0.2 \cdot S + 0.7 \cdot P1$.

 $NP2 = 0.1 \cdot LE2 + 0.2 \cdot TP + 0.7 \cdot P2$.

A nota final (NF) será calculada fazendo a média aritmética entre as notas parciais:

NF = (NP1 + NP2)/2.

Se NF ≥ 6,0 e a frequência for, no mínimo, igual a 75 %, o aluno será considerado aprovado na disciplina.

7.1 RECUPERAÇÃO: NOVAS OPORTUNIDADES DE APRENDIZAGEM E AVALIAÇÃO

Os alunos que não atingirem Nota Final (NF) igual ou superior a 6,0 poderão refazer as provas P1 e P2, em horário especial único definido no cronograma. As novas notas substituirão as respectivas notas anteriores.

8. REFERÊNCIAS

8.1 BÁSICA

BOYCE, W.; DIPRIMA, R. C. Equações diferenciais elementares e problemas de valores de contorno. 10. ed. Rio de Janeiro: LTC, 2010.

EDWARDS Jr., C. H.; PENNEY, D. E. Equações Diferenciais Elementares Com Problemas de Contorno. 3. ed. Rio de Janeiro: Prentice Hall, 1995.

ZILL, D. G. Equações diferenciais com aplicações em modelagem. São Paulo: Pioneira Thompson Learning, 2003.

8.2 COMPLEMENTAR

BASSANEZI, R.; FERREIRA JUNIOR, W. C. Equações diferenciais com aplicações. Rio de Janeiro: Harbra. 1988.

KREYSZIG, E. Matemática Superior para Engenharia. Rio de Janeiro: LTC, 2009. 1 v. . Matemática Superior para Engenharia. Rio de Janeiro: LTC, 2009. 2 v.

ZILL, D. G.; CULLEN, M. R. Equações diferenciais. 3. ed. São Paulo: Pearson, 2001. 1 v. Equações diferenciais. 3. ed. São Paulo: Pearson, 2001. 2 v.

Professor Coordenador do curso

8.3 SUGESTÕES