PLANO DE ENSINO

1. IDENTIFICAÇÃO

Curso: Ciência da Computação

Componente Curricular: Álgebra Linear

Fase: 2^a

Ano/Semestre: 2010/02 Numero de Créditos: 2 Carga horária - Hora Aula: 36

Carga horária - Hora Relógio: 30

Professor: Antônio Marcos Correa Neri

2. Objetivo Geral do Curso

O curso tem por objetivo a formação integral de novos cientistas e profissionais da computação, os quais deverão possuir conhecimentos técnicos e científicos e serem capazes de aplicar estes conhecimentos, de forma inovadora e transformadora, nas diferentes áreas de conhecimento da Computação. Adicionalmente, os egressos do curso deverão ser capazes de adaptar-se às constantes mudanças tecnológicas

e sociais, e ter uma formação ao mesmo tempo cidadã, interdisciplinar e profissional.

3. EMENTA

Álgebra Linear em espaços euclidianos: espaços vetoriais euclidianos. Produto interno. Transformações lineares. Autovalores e autovetores. Diagonalização.

4. JUSTIFICATIVA

Percebe-se a necessidade do aluno de Ciência da Computação de modelar sistemas que demandam de pensamento analítico preciso. Uma das atribuições da Álgebra Linear no curso de Ciência da Computação é permitir que o aluno seja confrontado com situações que lhe permitem exercitar a abstração. Alguns problemas recorrentes ao profissional da área são os relacionados à resolução de sistemas de equações lineares ou avaliar a possibilidade de solução para tais

sistemas. O curso de Álgebra Linear permite, de maneira formal, encontrar respostas para estes problemas.

5. OBJETIVOS

5.1. **GERAL**:

Propiciar ao aluno condições de identificar e abstrair propriedades fundamentais que definem um espaço vetorial real, transformações lineares e o processo de diagonalização.

5.2. ESPECÍFICOS:

Identificar e abstrair propriedades que definem espaços vetoriais, reconhecer exemplos de espaços vetoriais; identificar e reconhecer a matriz de uma transformações linear; explicitar e reconhecer como subespaços vetoriais o núcleo e a imagem de uma transformação linear; identificar operadores lineares; calcular autovalores e autovetores de uma transformação linear; aplicar autovalores e autovetores a diversos problemas que se apresentem.

6. CRONOGRAMA E CONTEÚDO PROGRAMÁTICO

Data Encontro	Conteúdo
1	Apresentação do professor, da disciplina, da metodologia de avaliação.
2	Espaços vetoriais: definição, exemplos. Exercícios. Subespaços vetoriais. Exemplos.
3	Dependência e Independência Linear. Subespaços gerados. Base.
4	Mudança de base. Exercícios.
5	Avaliação 1
6	Correção da Avaliação. Transformações Lineares.
7	Núcleo e Imagem.
8	A matriz de uma Transformação Linear.
9	Isomorfismos.
10	Espaços Euclidianos. Produto Interno.
11	Avaliação 2
12	Correção da Avaliação.
13	Autovalores e autovetores.
14	Diagonalização.
15	Diagonalização. Exercícios.
16	Aplicações da Álgebra Linear. Exercícios.

17	Avaliação 3.
18	Correção da Avaliação. Entrega dos resultados finais.
< clique aqui >	< clique aqui >
< clique aqui >	< clique aqui >
< clique aqui >	
< clique aqui >	< clique aqui >
< clique aqui >	< clique aqui >
< clique aqui >	< clique aqui >
< clique aqui >	< clique aqui >
< clique aqui >	< clique aqui >

7. PROCEDIMENTOS METODOLÓGICOS (estratégias de ensino, equipamentos, entre outros)

A disciplina será conduzida com aulas expositivas/dialogadas discutindos os itens de cunho teórico, e trabalhando exercícios no quadro. Eventualmente, serão utilizados softwares específicos e em alguns momentos os alunos deverão desenvolver, como forma de avaliação processual, listas de exercícios em sala de aula.

8. AVALIAÇÃO DO PROCESSO ENSINO-APRENDIZAGEM

Uso de abordagens tais como: provas teóricas, avaliação escrita em aula, exercícios extra-classe entre outros.

As avaliações serão agrupadas em dois momentos (conforme instrução normativa No. 001/Prograd/2010) Notas Parciais 1 e 2 (NP1 e NP2, respectivamente). A NP1 será composta por duas avaliações escritas (P1 e P2) com o seguinte cálculo:

NP1=P1*0,04+P2*0,06.

A NP2 será composta por uma avaliação escrita (P3) e trabalhos desenvolvidos em sala durante o curso, cuja soma será indicada por (T1), seguindo o seguinte cálculo:

NP2=P3*0,08+T1*0,02.

A média final (MF) será calculada como MF=(NP1+NP2)/2.

As notas das avaliações escritas são dadas em porcentagem de acertos do total de questões da avaliação, mas que as notas NP1, Np2 e M são dadas numa escala com valores entre 0 e 10, com precisão de décimos.

Aos alunos que não obtiverem média maior ou igual a 6,0 em uma das NPs, o momento de correção da avaliação servirá para prepará-los para uma reavaliação, que será agendada em momento oportuno.

9. REFERÊNCIAS

9.1. BÁSICAS:

CALLIOLI, C., DOMINGUES, H. et COSTA, R. Álgebra linear e aplicações. 6 ed. São Paulo: Atual, 2006.

SANTOS, R. J. Um curso de geometria analítica e álgebra linear. 2009.

ANTON, H., RORRES, C. Álgebra linear com aplicações. São Paulo: Bookman, 2001.

LEON, S. J. Álgebra linear com aplicações. 4 ed.Rio de Janeiro: LTC, 1999

9.2. ESPECÍFICAS:

BOLDRINI, J. L., COSTA, S. I. R., FIGUEIREDO, V. L. et WETZLER, Algebra linear. 3 ed. São Paulo: STEINBRUCH, A. et WINTERLE, P. Álgebra linear. 2 ed. São Paulo: Makron Books, 1990. LIMA, E. L. Álgebra linear. 2 ed. Rio de Janeiro: IMPA, 2008. COELHO, F. U. et LOURENÇO, M. L. Um curso de álgebra linear. 2 ed. São Paulo: Edusp, 2001. HOFFMAN, K. M. et KUNZE, R. Linear algebra. 2 ed. Prentice Hall, 1971. LIPSCHUTZ, S. et LIPSON, M. Álgebra linear. 3 ed. São Paulo: Bookman, 2004.