PLANO DE ENSINO

1. IDENTIFICAÇÃO

Curso: CIÊNCIA DA COMPUTAÇÃO

Componente Curricular: CÁLCULO NUMÉRICO

Fase: 4a

Ano/Semestre: 2011/2 **Numero de Créditos:** 04

Carga horária - Hora Aula: 72 Carga horária - Hora Relógio: 60

Professor: PEDRO AUGUSTO PEREIRA BORGES

2. Objetivo Geral do Curso

O curso tem por objetivo a formação integral de novos cientistas e profissionais da computação, os quais deverão possuir conhecimentos técnicos e científicos e serem capazes de aplicar estes conhecimentos, de forma inovadora e transformadora, nas diferentes áreas de conhecimento da Computação. Adicionalmente, os egressos do curso deverão ser capazes de adaptar-se às constantes mudanças tecnológicas e sociais, e ter uma formação ao mesmo tempo cidadã, interdisciplinar e profissional.

3. EMENTA

Erros computacionais e aproximação numérica. Cálculo de raízes de funções reais. Resolução de sistemas lineares: métodos diretos e iterativos. Interpolação polinomial. Ajuste de curvas: quadrados mínimos lineares. Diferenciação e integração numérica. Tratamento numérico de equações diferenciais ordinárias.

4. JUSTIFICATIVA

A ciência da computação é uma área de aplicação das ciências básicas, particularmente da matemática. A Matemática é uma linguagem consensualmente eficiente para expressar as relações entre as variáveis presentes nos fenômenos naturais, de interesse do homem. Os conceitos de cálculo diferencial e integral, além de equações diferenciais constituem a base das formulações teóricas de várias áreas da ciência, tais como eletricidade, economia, ciência dos materiais e

outras. Assim, a formação do egresso do curso de ciência da computação passa necessariamente por uma iniciação em Matemática. O Cálculo Numérico é uma disciplina de aplicação de técnicas de programação e complementa a formação do Cálculo Diferencial e Integral de funções contínuas, proporcionando recursos de soluções iterativas para os problemas da ciência.

5. OBJETIVOS

5.1. **GERAL**:

Abordar a resolução não algébrica de problemas matemáticos por meio de métodos numéricos, fazendo uso de ferramentas do cálculo diferencial e integral e da álgebra linear.

5.2. ESPECÍFICOS:

- 1.Desenvolver habilidades e expressar problemas práticos e científicos com a linguagem matemática .
- 2.Estudar os fundamentos matemáticos dos algoritmos numéricos.
 3.Desenvolver os algoritmos numéricos manualmente e na forma de programas computacionais.
- 4. Analisar problemas de convergência e precisão das soluções numéricas.
- 5. Aplicar os algoritmos numéricos em problemas da ciência.

< >

< clique aqui >

6. CRONOGRAMA E CONTEÚDO PROGRAMÁTICO

Data	Conteúdo
Encontro	
02/08/11	Apresentação da disciplina: ementa, conteúdo programático, sistemática de
	avaliação e bibliografia recomendada. Erros computacionais e aproximações
	numéricas.
04/08/11	Raíz de uma função real. Método da bisseção.
09/08/11	Exercícios de aplicação. Método gráfico de localização de raízes.
11/08/11	Método das cordas
16/08/11	Método de Newton
18/08/11	Análise comparativa de métodos de cálculo de raízes.
23/08/11	Sistemas lineares. Método de Gauss-Jordan
30/08/11	Métodos numéricos para sistemas lineares. Método de Jacobi.
01/09/11	Método de Gauss-Seidel
06/09/11	Convergência de métodos iterativos. Noções de mal condicionamento.

	Exemplo de aplicação.
08/09/11	Exercícios e algoritmos sobre sistemas lineares
13/09/11	Interpolação. Interpolação linear.
15/09/11	Interpolação quadrática. Interpolação de Lagrange
20/09/11	Diferenças divididas.
22/09/11	Diferenças Finitas
27/09/11	1a avaliação.
29/09/11	Ajuste de curvas. Ajuste linear simples. Método dos mínimos quadrados.
	Coeficiente de determinação.
04/10/11	Ajuste linear múltiplo
06/10/11	Exercícios
11/10/11	Diferenciação numérica. Integração numérica. Regra dos trapézios
13/10/11	Primeira regra de Simpsom
18/10/11	Segunda Regra de Simpsom
20/10/11	Equações diferenciais. Problemas de valor inicial. Exemplos de soluções
	analíticas.
25/10/11	Método de Euler
27/10/11	Método de passo-simples. Métodos com derivadas
01/11/11	Método de Runge-Kutta de segunda ordem
03/11/11	Métodos de Runge-Kutta de terceira e quarta ordem
08/11/11	2a Avaliação
10/11/11	Recuperação
	< clique aqui >
< clique aqui >	< clique aqui >
< clique aqui >	< clique aqui >
< clique aqui >	< clique aqui >
	< clique aqui >
< clique aqui >	< clique aqui >

7. PROCEDIMENTOS METODOLÓGICOS (estratégias de ensino, equipamentos, entre outros)

Aulas expositivas: apresentação da teoria, conceitos, propriedades, exemplos ilustrativos e exercícios. Utilização de calculadoras para execução dos algoritmos manualmente e aplicativos computacionais para elaboração de programas e visualização de curvas e superfícies. Trabalhos de desenvolvimento de algoritmos dos métodos numéricos em

linguagem computacional.

Horário de atendimento extra-classe: terça-feira, das 16 as 18 h.

8. AVALIAÇÃO DO PROCESSO ENSINO-APRENDIZAGEM

O sistema de avaliação seguirá as normas gerais estabelecidas pela UFFS. Serão realizadas duas avaliações sob a forma de provas escritas (notas P1 e P2) e dois trabalhos, na forma de pequenos artigos (notas T1 e T2). As notas parciais NP1 e NP2 serão calculadas fazendo a média aritmética entre provas e trabalhos, da seguinte maneira: P1: avaliação da primeira nota escrita; P2: avaliação da segunda escrita; nota T1: do primeiro trabalho: nota T2: do segundo trabalho; nota NP1: primeira nota parcial: NP1 0.3 T1 +0.7P1, NP2: segunda nota parcial: P2 NP2 0.3 T2 0.7

A nota final (NF) será calculada fazendo a média entre as notas parciais:

NF = (NP1 + NP2)/2. Se NF $\geq 6,0$, e a frequência for, no mínimo, igual a 75 %, o aluno será considerado aprovado na disciplina. Os alunos que não atingiram NF igual ou superior a 6,0 poderão fazer uma prova de Recuperação (R), sobre todo o conteúdo. A Recuperação substituirá a menor nota entre P1 e P2, se for maior do que estas.

9. REFERÊNCIAS

9.1. BÁSICAS:

BARROSO, L. C. et al. Cálculo numérico (com aplicações). São Paulo: Harbra, 1987. FRANCO, N. M. B. Cálculo numérico. São Paulo: Prentice Hall, 2007. HUMES, A. F. P. C. et al. Noções de cálculo numérico. São Paulo: McGraw Hill, 1984. RUGGIERO, M. A. G.; LOPES, V. L. R. Cálculo numérico – aspectos teóricos e computacionais. 2. ed. São Paulo: Makron Books, 1996.

9.2. ESPECÍFICAS:

BURIAN, R.; LIMA, A. C. Fundamentos de informática – cálculo

2007. Rio numérico. de Janeiro: LTC, CLÁUDIO, D. M.; MARINS, J. M. Cálculo numérico computacional -São Paulo: Atlas, prática. 1989. MEYER, C. D. Matrix analysis and applied linear algebra. New York: SIAM, 2000. ROQUE, W. L. Introdução ao cálculo numérico. São Paulo: Atlas, 2000. WATKINS, D. S. Fundamentals of matrix computations. New York: John Wiley and Sons, 1991.